Design and Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benz[e]indole-4-one (CBI) Dimers

Guofeng Jia, Hirokazu Iida and J.William Lown*

Department of Chemistry, University of Alberta, Edmonton, AB, Canada, T6G 2G2

Abstract: Three series of dimers, which contain two racemic 1,2,9,9a-tetrahydrocyclopropa-[c]benz[e]indol-4-one (CBI) moieties linked by flexible methylene chain of variable length, were synthesized.

CC-1065, a highly cytotoxic antitumor antibiotic, has been shown to bind covalently to the N-3 position of selected adenines located within the minor groove of double stranded B-DNA by using the cyclopropylpyrroloindole (CPI) subunit of the natural product.¹ Studies have shown that cetain structures which contain two CPI moieties, the alkylating subunit of CC-1065, are significantly more potent than CC-1065 both *in vitro* and *in vivo*.² Furthermore, many active antitumor agents act by cross-linking DNA.^{2b,3} Boger et al. reported that 1,2,9,9a-tetrahydrocyclopropa[*c*]benz-[*e*]indol-4-one (CBI) based agents displayed similar DNA alkylation specificity to those shown for

Figure 1. Structures of CC-1065 and CPI Dimers

the CPI counterparts. These compounds have the beneficial attribute of improved chemical stabilities and greater biological activities.^{2b,4} While to date some CPI dimers have been prepared to examine inter strand cross-linking of DNA (Figure 1), to our knowledge, no attempt has been made to synthesized CBI dimers. Previously, we reported the synthesis of fully protected bifunctional CBI.⁵ In order to investigate the structure-activity relationships systematically, we have designed and synthesized three series of dimers which contain two racemic CBI moieties linked from two positions by a flexible methylene chain of variable length.

Synthesis of C7-C7 Dimers. The synthetic approach began with fully protected racemic CBI 1.^{5b} Deprotection of the Fmoc group followed by reaction with 0.5 equiv of di-acid chloride (glutaryl dichloride, adipoyl chloride, pimeloyl chloride, or suberoyl chloride) produced benzyl protected CBI dimers **3i-iv** in high yield (80-86%). Treatment of **3i-iv** with 3.6 equiv of ammonium formate in the presence of Pd-C⁶ for about 15 minutes provided C7-C7 CBI dimers **4i-iv**⁷ in 86-97% yield.

i: n=3, ii: n=4, iii: n=5, iv: n=6

Reagents and conditions: a, n-Bu₄NF; b, ClCO(CH₂)₃COCl, ClCO(CH₂)₄COCl, ClCO(CH₂)₅COCl or ClCO(CH₂)₆COCl, Et₃N; c, HCO₂NH₄, Pd/C.

Synthesis of N3-N3 Dimers. To deactivate the amino group at the C7 position, Fmoc was removed from 1 and followed immediately by reaction with acetyl chloride almost quantitatively to afford 5. Detachment of the Boc group from 5 followed by coupling with 0.5 molar amount of di-acid chloride (glutaryl dichloride, adipoyl chloride, pimeloyl chloride, or suberoyl chloride) afforded 7i-iv in good yield (66-96%). Hydrogenolysis of 7i-iv served to remove the benzyl group and provided N3-N3 CBI dimers 8i-iv⁸ (HCO₂NH₄, Pd/C, 71-76%).

i: n=3, ii: n=4, iii: n=5, iv: n=6

Reagents and conditions: a, CH₃COCI, Et₃N; b, 4M HCl in dioxane; c, ClCO(CH₂)₃COCl, ClCO(CH₂)₄COCl, ClCO(CH₂)₅COCl or ClCO(CH₂)₆COCl, Et₃N; d, HCO₂NH₄, Pd/C.

Synthesis of N3-C7 Dimers. Condensation of agent 6 in the presence of EDCI with excess amount of di-acid (glutaryl acid, adipoyl acid, pimeloyl acid, or suberoyl acid) gave acids 9i-iv in 66-69% yield. Notably, treatment of 6 with excess di-acid chloride led to a complex mixture, probably arising from the high activity of the acid chlorides. Coupling acids 9i-iv with 2 (4 equiv of EDCI, DMF, 23°C) produced protected CBI dimers 10i-iv in fair yield (55-62%). Deprotection of benzyl group from 10i-iv afforded N3-C7 dimers 11i-iv⁹ in good yield (71-76%).

Design and Synthesis of 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indole-4-one (CBI) dimers

i: n=3, ii: n=4, iii: n=5, iv: n=6

Reagents and conditions: a, CICO(CH₂)₃COCl, CICO(CH₂)₄COCl, CICO(CH₂)₅COCl or CICO(CH₂)₆COCl, Et₃N, EDCl; b, **2**, EDCl; c, HCO₂NH₄, Pd/C.

In summary, three series of dimers containing flexible polymethylene linkages between CBI moieties from two different positions were designed and synthesized. Their biological activity and DNA crosslinking ability are currently under investigation.

We gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (to J.W.L.).

References and Notes:

- For latest review see: D.L. Boger and D.S. Johnson, Angew. Chem., Int. Ed. Engl., 1996, 35, 1439.
- 2 (a) M.A. Mitchell, P.D. Johnson, M.G. Williams and P.A. Aristoff, J. Am. Chem. Soc., 1989, 111, 6428; (b) S.R. Rajski and R.M. Williams, Chem. Rev., 1998, 98, 2723 and references cited therein.
- 3 A. Das, K.S. Tang, S.Gopalakrishnan, M.J. Waring and M. Tomasz, *Chem. Biol.*, 1999, 6, 461.
- 4 D.L. Boger, C.W. Boyce, R.M. Genbaccio and J.A. Goldberg, *Chem. Rev.*, 1997, **97**, 787 and references cited therein.
- 5 (a) G. Jia, H. Iida and J.W. Lown, *Heterocyclic Commun.*, 1998, 4, 557; (b) G. Jia, H. Iida and J.W. Lown, *Chem. Commun.*, 1999, 119.

- 6 V.F. Patel, S.L. Andis, J.K. Enkema, D.A. Johnson, J.H. Kennedy, F. Mohamadi, R.M. Schultz, D.J. Soose and M.M. Spees, J. Org. Chem., 1997, 62, 8868.
- 7 4i: ¹HNMR (DMSO-d6) δ: 10.26(s, OH), 10.01(s, NH), 8.41(s, 2H, 2xC6-H), 7.70-7.62(m, 6H, 2xC4,7,8-H), 4.09-3.65(m, 10H, C1,2-H, 2xClCH₂), 2.42(t, 4H, J=7.2Hz, 2xCH₂CO), 1.98-1.93(m, 2H, CH₂), 1.49(s, 18H, 2xBoc-H). ES-HRMS m/z Calcd for C41H47N408Cl2 793.2771, found 793.2771 (M++H). **4ii**: ¹HNMR (DMSO-d₆) δ: 10.25(s, OH), 9.98(s, NH), 8.34(s, 2H, 2xC6-H), 7.70-7.62(m, 6H, 2xC4,7,8-H), 4.07-3.59(m, 10H, C1,2-H, 2xClCH₂), 2.41-2.36(m, 4H, 2xCH₂CO), 1.69-1.65(m, 4H, CH₂CH₂), 1.52(s, 18H, 2xBoc-H). ES-HRMS m/z Calcd for C42H48N408Cl2Na 829.2748, found 829.2755 (M++Na). **4iii**: ¹HNMR (DMSO-d₆) δ: 10.26(s, OH), 9.96(s, NH), 8.38(s, 2H, 2xC6-H), 7.68-7.61(m, 6H, 2xC4,7,8-H), 4.08-3.65(m, 10H, C1,2-H, 2xClCH₂), 2.34(t, 4H, J=7.2Hz, 2xCH₂CO), 1.68-1.63(m, 4H, CH₂CH₂), 1.52(s, 18H, 2xBoc-H), 1.43-1.37(m, 2H, CH2). ES-HRMS m/z Calcd for C43H51N408Cl2 821.3084, found 821.3082 (M++H). 4iv: ¹HNMR (DMSO-d6) δ: 10.25(s, OH), 9.94(s, NH), 8.38(s, 2H, 2×C6-H), 7.69-7.61(m, 6H, 2xC4,7,8-H), 4.08-3.69(m, 10H, C1,2-H, 2xClCH₂), 2.33(t, 4H, J=7.3Hz, 2xCH₂CO), 1.68-1.60(m, 4H, 2xCH₂), 1.52(s, 18H, 2xBoc-H), 1.38-1.34(m, 4H, CH₂CH₂). ES-HRMS *m*/*z* Calcd for C44H53N408Cl₂ 835.3240, found 835.3244 (M⁺+H).
- 8 8i: ¹HNMR (DMSO-d₆) δ: 10.23(s, OH), 10.02(s, NH), 8.36(s, 2H, 2xC6-H), 7.97(s, 2H, 2xC4-H), 7.72-7.66(m, 4H, 2xC9,8-H), 4.34-4.26(m, 2H, 2xC1-H), 4.18-4.08(m, 4H, 2xC2-H), 4.01-3.94(m, 2H, 2xC1CHH), 3.80-3.72(m, 2H, 2xC1CHH), 2.70-2.54(m, 4H, 2xCH₂CO), 2.06(s, 6H, 2xCH₃CON), 1.68-1.60(m, 2H, CH₂). ES-MS *m*/*z* Calcd for C35H35N406Cl₂ 677.2, found 677.2 (M⁺+H, 95), 679.2(65).

8ii: ¹HNMR (DMSO-d₆) δ: 10.24(s, OH), 10.02(s, NH), 8.35(s, 2H, 2xC6-H), 7.94(s, 2H, 2xC4-H), 7.72(d, 2H, J=8.9Hz, 2xC9-H), 7.64(d, 2H, J=8.9Hz, 2xC8-H), 4.34-4.29(m, 2H, 2xC1-H), 4.16-4.10(m, 4H, 2xC2-H), 3.98-3.96(m, 2H, 2xC1CHH), 3.79-3.73(m, 2H, 2xC1CHH), 2.62-2.53(m, 4H, 2xCH₂CO), 2.06(s, 6H, 2xCH₃CON), 1.65-1.61(m, 4H, CH₂CH₂). ES-MS *m*/*z* Calcd for C36H36N406Cl₂Na 713.2, found 713.2 (M⁺+Na, 50), 715.2(36).

8iii: ¹HNMR (DMSO-d₆) δ: 10.24(s, OH), 10.03(s, NH), 8.35(s, 2H, 2xC6-H), 7.96(s, 2H, 2xC4-H), 7.72(d, 2H, J=9.0Hz, 2xC9-H), 7.65(d, 2H, J=9.0Hz, 2xC8-H), 4.35-4.30(m, 2H, 2xC1-H), 4.15-4.04(m, 4H, 2xC2-H), 3.98-3.95(m, 2H, 2xC1CHH), 3.74-3.72(m, 2H, 2xC1CHH), 2.63-2.53(m, 4H, 2xCH₂CO), 2.06(s, 6H, 2xCH₃CON), 1.60-1.55(m, 4H, 2xCH₂), 1.48-1.42(m, 2H, CH₂). ES-MS *m*/*z* Calcd for C₃₇H₃₉N₄0₆Cl₂ 705.2, found 705.3 (M⁺+H, 100), 707.2(66).

8iv: ¹HNMR (DMSO-d6) δ: 10.24(s, OH), 10.03(s, NH), 8.35(s, 2H, 2xC6-H), 7.95(s, 2H, 2xC4-H), 7.72(d, 2H, J=8.7Hz, 2xC9-H), 7.64(d, 2H, J=8.7Hz, 2xC8-H), 4.32-4.26(m, 2H, 2xC1-H), 4.14-4.05(m, 4H, 2xC2-H), 3.99-3.94(m, 2H, 2xC1CHH), 3.76-3.72(m, 2H, 2xC1CHH), 2.63-2.52(m, 4H, 2xCH₂CO), 2.07(s, 6H, 2xCH₃CON), 1.66-1.62(m, 4H, 2xCH₂), 1.45-1.38(m, 4H, CH₂CH₂).ES-MS *m*/*z* Calcd for C38H41N406Cl₂ 719.2, found 719.2 (M⁺+H, 100), 721.2(70).

9 11i: ¹HNMR (DMSO-d₆) δ: 10.26(s, OH), 10.02(s, NH), 10.01(s, NH), 8.40(s, 1H, C6-H), 8.36(s, 1H, C6-H), 7.96(s, 1H, C4-H), 7.73-7.63(m, 5H, C4-H, 2xC8,9-H), 4.33-4.28(m, 1H, C1-H), 4.14-3.90(m, 7H, C1-H, 2xC2-H, 2xClCHH), 3.78-3.71(m, 2H, 2xClCHH), 2.46-2.43(m, 4H, 2xCH₂CO), 2.06(s, 3H, CH₃CON), 1.98-1.93(m, 2H, CH₂), 1.53(s, 9H, Boc-H). ES-MS *m*/*z* Calcd for C38H40N407Cl₂Na 757.2, found 757.2 (M⁺+Na, 100), 759.2(70).

11ii: ¹HNMR (DMSO-d₆) δ: 10.25(s, OH), 10.23(s, OH), 10.01(s, NH), 9.98(s, NH), 8.38(s, 1H, C6-H), 8.34(s, 1H, C6-H), 7.94(s, 1H, C4-H), 7.71-7.63(m, 5H, C4-H, 2xC8,9-H), 4.34-4.27(m, 1H, C1-H), 4.14-3.94(m, 7H, C1-H, 2xC2-H, 2xClC*H*H), 3.78-3.72(m, 2H, 2xClCH*H*), 2.45-2.32(m, 4H, 2xCH₂CO), 2.06(s, 3H, CH₃CON), 1.78-1.64(m, 4H, CH₂CH₂), 1.53(s, 9H, Boc-H). ES-MS *m*/*z* Calcd for C₃₉H₄₂N₄07Cl₂Na 771.2, found 771.2 (M⁺+Na, 50), 773.2(30).

11iii: ¹HNMR (DMSO-d₆) δ: 10.25(s, OH), 10.23(s, OH), 10.02(s, NH), 9.96(s, NH), 8.38(s, 1H, C6-H), 8.35(s, 1H, C6-H), 7.94(s, 1H, C4-H), 7.72-7.62(m, 5H, C4-H, 2xC8,9-H), 4.33-4.27(m, 1H, C1-H), 4.13-3.95(m, 7H, C1-H, 2xC2-H, 2xClCHH), 3.78-3.72(m, 2H, 2xClCHH), 2.44-2.33(m, 4H, 2xCH₂CO), 2.06(s, 3H, CH₃CON), 1.70-1.62(m, 4H, 2xCH₂), 1.53(s, 9H, Boc-H), 1.47-1.41(m, 2H, CH₂). ES-MS *m*/*z* Calcd for C40H45N407Cl₂ 763.3, found 763.3 (M⁺+H, 100), 765.3(70).

11iv: ¹HNMR (DMSO-d₆) δ: 10.25(s, OH), 10.22(s, OH), 10.01(s, NH), 9.94(s, NH), 8.38(s, 1H, C6-H), 8.34(s, 1H, C6-H), 7.94(s, 1H, C4-H), 7.72-7.63(m, 5H, C4-H, 2xC8,9-H), 4.30-4.25(m, 1H, C1-H), 4.12-3.93(m, 7H, C1-H, 2xC2-H, 2xClCHH), 3.76-3.72(m, 2H, 2xClCHH), 2.45-2.32(m, 4H, 2xCH₂CO), 2.06(s, 3H, CH₃CON), 1.66-1.58(m, 4H, 2xCH₂), 1.53(s, 9H, Boc-H), 1.40-1.34(m, 4H, CH₂CH₂). ES-MS *m*/*z* Calcd for C4₁H₄7N₄07Cl₂ 777.2, found 777.2 (M⁺+H, 15), 779.2(10).

Received on August 30, 1999